

Sample Paper
10+2
Mathematics (For DA Students)

Time : 3 Hours

Maximum Marks : 80

Instructions:

1. Section A contains Q1 to Q26 (objective type questions) of 2 marks each.
2. Section B contains Q27 to Q34 of 3 marks each.
3. Section C contains Q35 to Q42 of 4 marks each.
4. All questions of Section A are compulsory. Attempt any 4 questions out of 8 questions in Section B. Attempt any 4 questions out of 8 questions in Section C.

Section A

Choose a correct option from the given options from Q1 to Q7 :

Q1	Let $R = \{(a, b) : a = b - 2, b > 6\}$ be a relation defined on the set \mathbb{N} of natural numbers, then				2
	(a) $(2, 4) \in R$	(b) $(3, 8) \in R$	(c) $(6, 8) \in R$	(d) $(8, 7) \in R$	
Q2	The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x) = 2x - 5$ is				2
	(a) one-one only	(b) onto only	(c) one-one and onto	(d) not onto	
Q3	Principal value of $\sin^{-1}\left(\frac{-1}{2}\right)$ is				2
	(a) $-\frac{\pi}{6}$	(b) $\frac{\pi}{6}$	(c) $-\frac{\pi}{3}$	(d) $\frac{\pi}{3}$	
Q4	If $y = \sin^{-1}(x)$ then x belongs to the interval :				2
	(a) $(0, \pi)$	(b) $(-1, 1)$	(c) $[-1, 1]$	(d) $[0, \pi]$	
Q5	If order of matrix A is 2×3 and order of matrix B is 3×5 then order of matrix $B'A'$ is :				2
	(a) 5×2	(b) 2×5	(c) 5×3	(d) 3×2	
Q6	If $\begin{vmatrix} x & 1 \\ 1 & x \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 8 & 4 \end{vmatrix}$ then value of x is :				2
	(a) ± 3	(b) ± 2	(c) ± 4	(d) ± 8	
Q7	If $\begin{bmatrix} 2x+y & 0 \\ 5 & x \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 5 & 3 \end{bmatrix}$, then y is equal to:-				2
	(a) 1	(b) 3	(c) 2	(d) -1	

Match the columns from Q8 to Q13 :

Q8	Col. A	Col. B	2
	(a) $A + A'$	(i) Always a null Matrix	
	(b) $A - A'$	(ii) Symmetric Matrix	
		(iii) Skew-Symmetric Matrix	
Q9	Col. A	Col. B	2
	(a) $f(x) = e^x$	(i) Continuous function	
	(b) $f(x) = \frac{1}{x}$	(ii) Identity function	
		(iii) Discontinuous function	
Q10	Col. A	Col. B	2
	(a) $\frac{d}{dx}(\sin x)$	(i) $\tan x$	
	(b) $\frac{d}{dx}(\cos x)$	(ii) $\cos x$	
		(iii) $-\sin x$	
Q11	Col. A	Col. B	2
	(a) $f(x) = -x$	(i) Strictly increasing function	
	(b) $f(x) = e^x$	(ii) Strictly decreasing function	
		(iii) Constant function	
Q12	Col. A	Col. B	2
	(a) $f''(a) < 0$	(i) $x = a$ is point of minima	
	(b) $f''(a) > 0$	(ii) $x = a$ is point of maxima	
		(iii) $x = a$ is a point of inflexion	
Q13	Col. A	Col. B	2
	(a) $\int dx$	(i) $-\sin x + c$	
	(b) $\int \cos x dx$	(ii) $x + c$	
		(iii) $\sin x + c$	

Fill in the blanks from Q14 to Q20 from the the following options :

$$\left\{ -2, \quad \sqrt{426}, \quad \frac{1}{2}, \quad \int_1^4 x^2 dx, \quad 4 \int_0^3 \sqrt{9 - x^2} dx, \quad 2, \quad e^{2x}, \quad 5, \quad \tan x \right\}$$

Q14 $\int_0^1 x dx = \underline{\hspace{2cm}}$ 2

Q15 Area of the region bounded between parabola $y = x^2$ and lines $x = 1, x = 4$ in the first quadrant is given by the integral $\underline{\hspace{2cm}}$ 2

Q16 Area of the circle $x^2 + y^2 = 9$ is given by the integral $\underline{\hspace{2cm}}$ 2

Q17 Order of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 + y = 0$ is $\underline{\hspace{2cm}}$ 2

Q18 Integrating factor of the differential equation $\frac{dy}{dx} + 2y = \cos x$ is $\underline{\hspace{2cm}}$ 2

Q19 If $\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$ and $\vec{b} = 3\hat{i} + 2\hat{j} - \hat{k}$ then $\vec{a} \cdot \vec{b} = \underline{\hspace{2cm}}$ 2

Q20 If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ then $|\vec{a} \times \vec{b}| = \underline{\hspace{2cm}}$ 2

State as True or False from Q21 to Q26.

Q21 Direction ratios of x –axis are $< 0, 1, 1 >$. 2

Q22 $\frac{x-2}{3} = \frac{y+7}{2} = \frac{z-9}{5}$ is the vector form of equation of line. 2

Q23 Subject to the constraints $x + y \leq 3$, $x \geq 0$, $y \geq 0$ maximum value of $Z = 2x + y$ is 6. 2

Q24 Subject to the constraints $x + y \leq 5$, $x \geq 0$, $y \geq 0$ maximum value of $Z = x + 2y$ is 5. 2

Q25 If $P(A) = 0.3$ then $P(\bar{A}) = 0.6$. 2

Q26 If $P(A) = 0.5$, $P(A \cap B) = 0.2$ then $P(B / A) = 0.4$ 2

Section B

This section contains 8 questions of 3 marks each. Attempt any 4 questions out of these questions .

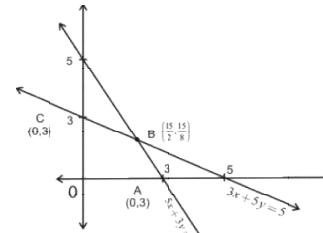
Q27 Find the value of $4 \tan^{-1}(1) - \cos^{-1}\left(-\frac{1}{2}\right)$ 3

Q28 Form a matrix $A = [a_{ij}]$ of order 2×2 where $a_{ij} = i + j$. 3

Q29 If $y = \cos 2x - \sin 5x$ then find $\frac{dy}{dx}$. 3

Q30 Evaluate $\int_0^1 \frac{dx}{1+x^2}$. 3

Q31 Find the area of the region bounded by the parabola $y^2 = x$ lines $x = 0$, $x = 3$ and x – axis in the first quadrant. 3


Q32 If $\vec{a} = 3\hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = 5\hat{i} + \hat{j} - 7\hat{k}$ then find $|\vec{a} \times \vec{b}|$. 3

Q33 Find the vector and Cartesian equation of the line which passes through the points $(3, -2, -4)$ and $(5, -7, 8)$. 3

Q34 If $P(A) = \frac{6}{11}$, $P(B) = \frac{5}{11}$ and $P(A \cup B) = \frac{7}{11}$ then find $P(A \cap B)$. 3

Section C

This section contains 8 questions of 4 marks each. Attempt any 4 questions out of these questions .

Q42 Two balls are drawn at random with replacement from a box containing 10 black balls and 8 red balls. Find the probability that one of them is black and other is red. 4